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Regional effect on the molecular clock 
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Abstract 

Background:  Different types of proteins diverge at vastly different rates. Moreover, the same type of protein has 
been observed to evolve with different rates in different phylogenetic lineages. In the present study we measured 
the rates of protein evolution in Eutheria (placental mammals) and Metatheria (marsupials) on a genome-wide basis 
and we propose that the gene position in the genome landscape has an important influence on the rate of protein 
divergence.

Results:  We analyzed a protein-encoding gene set (n = 15,727) common to 16 mammals (12 Eutheria and 4 
Metatheria). Using sliding windows that averaged regional effects of protein divergence we constructed landscapes 
in which strong and lineage-specific regional effects were seen on the molecular clock rate of protein divergence. 
Within each lineage, the relatively high rates were preferentially found in subtelomeric chromosomal regions. Such 
regions were observed to contain important and well-studied loci for fetal growth, uterine function and the genera-
tion of diversity in the adaptive repertoire of immunoglobulins.

Conclusions:  A genome landscape approach visualizes lineage-specific regional differences between Eutherian and 
Metatherian rates of protein evolution. This phenomenon of chromosomal position is a new element that explains at 
least part of the lineage-specific effects and differences between proteins on the molecular clock rates.

Keywords:  Landscapes, Protein evolution, GC content, Metatheria, Eutheria, Molecular clock, Substitution rate, 
Neutral evolution
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Background
Recently we proposed a method that facilitates 
genome-wide analysis of macro-evolutionary events in 
vertebrates [1]. We used a sliding window approach, 
which integrates information of a centered gene and 
its 100 neighbors, smoothening the known erratic 

behavior of individual genes that vary greatly in nucleo-
tide composition, intron size and rate of evolution of 
encoded proteins [1]. Such integration visualizes strong 
region-specific events that apply to tens or hundreds 
of adjacent genes. This enables the calculation of chro-
mosomal heterogeneity, which can be visualized as 
landscapes of base composition of encoded mRNAs, 
amino acid composition of encoded proteins and 
rates of protein evolution [1]. A previous analysis of 
55 genomes—including species of all major vertebrate 
classes—resulted in landscapes with conserved regions 
in which GC content (GC%) of encoded mRNAs, 
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abundance of glycine, alanine, arginine and proline 
(GARP%) in encoded proteins and divergence rates 
of orthologous proteins were clearly below or above 
genome-wide averages. In particular, regions near tel-
omeres exhibited elevated GC% and GARP% in the 
class of mammals [1].

In this study we addressed whether the analysis of 
genome-wide landscapes of protein divergence in dif-
ferent mammalian species could shed new light on the 
discussion which factors contribute to the molecular 
clock rate of protein evolution. Initial studies by Zuck-
erkandl and Pauling suggested a constant rate k in 
various organisms at which amino acid changes accu-
mulate in proteins such as cytochrome c, hemoglobin 
and fibrinogen [2, 3]. This constant rate inferred the 
existence of a species-independent molecular clock 
constant of orthologous proteins. However, one com-
plexity of the concept of a molecular clock is the fact 
that k varies enormously between different types of 
proteins. Moreover, it was observed that for the same 
type of protein, the rate k can vary between lineages, so 
that data were better explained by relaxed clock mod-
els [3, 4]. Different rates for different species were pro-
posed to depend on multiple factors such as generation 
time, population size, and basal metabolic rate [5]. To 
the best of our knowledge, chromosomal positioning 
of a gene (which often differs in different lineages) has 
not yet been considered as an underlying mechanism. 
To this end, we analyzed two major lineages of mam-
mals that split approximately 160 million years ago [6, 
7] into Eutheria (placental mammals) and Metatheria 
(marsupials). While genome-wide averages of pro-
tein divergence suggest the existence of a clock rate, 
these averages are made up of individual protein data 
with enormous differences in rates. However, when we 
take samples of 101 genes based on the location in the 
genome, landscapes with increased and decreased rates 
can be discerned. As the Metatherian and Eutherian 
landscapes display different areas of deceleration/accel-
eration, we propose that gene position is a mechanism 
that can contribute to differences between phyla in the 
rate of orthologous protein evolution.

Results
The present work departed from methods that were 
described recently to characterize protein-encoding 
genes of vertebrate genomes [1]. For this approach, 
homologous genes of different species were ranked on a 
reference genome and parameters associated to the genes 
were plotted, giving rise to exome landscapes, which 
allow comparisons between multiple genomes. In the 
current study, we compared these landscapes between 
two major classes of mammals: Eutheria (12 species) 
and Metatheria (4 species). Figure 1a and b illustrate the 
exome landscape characteristics of the sliding window 
average of GC content (GC%) and the sum of glycine, 
alanine, arginine and proline in the amino acid compo-
sition (GARP%) of two mammals that are comparable in 
terms of body size and life span: Felis catus (cat, euthe-
rian lineage, Fig.  1a) and Phascolarctos cinereus (koala, 
metatherian lineage, Fig.  1b). When analyzed per spe-
cies, the correlation between GC% and GARP% was very 
high (R = 0.94 for koala and R = 0.92 for cat). However, 
inter-species correlations were much lower: R = 0.78 for 
GC% and R = 0.82 for GARP%. Figure  1d and 1e show 
the same data set, but with the difference that the genes 
were ordered according to the metatherian Monodel-
phis domestica reference genome. Again, within spe-
cies, the correlation between GC% and GARP% was 
excellent (R > 0.92), while inter-species correlations 
for GC% (R = 0.75) and GARP% (R = 0.80) were lower. 
While Fig. 1a, b, d and e illustrate the myriad details in 
the genome landscapes of two species, they do not allow 
for a practical search for lineage-specific events involv-
ing multiple species. Yet, such an analysis is useful as 
lineage-specific details in the landscapes could be taken 
as synapomorphies to further study genome evolution. 
For all of the 16 studied species we calculated the slid-
ing window averaged GC% values, creating landscapes 
that can visualize regional differences of low (blue) and 
high (red) GC% (Fig.  1c and f ). Whether gene regions 
are calculated using Eutherian reference genomes (Homo 
sapiens—Fig. 1c or Sus scrofa—Additional file 1: Fig. S1) 
or a Metatherian reference genome (Monodelphis domes-
tica—Fig.  1f ), the strong lineage-specific characteristics 

(See figure on next page.)
Fig. 1  Landscapes of GC% and GARP% in Eutheria and Metatheria. For each of the 15,727 genes included in this comparative analysis we 
calculated GC content (GC%) and relative occurrence of glycine, alanine, arginine and proline in predicted proteins (GARP%). Gene data were 
integrated with the values of surrounding genes (50 genes on each side). Alternating grey and white zones demarcate individual chromosomes. In 
a–c, genes were ordered according to a Eutherian (Homo sapiens) genome, while in d–f the gene order was Metatherian (Monodelphis domestica). 
a-b) GC% (black) and GARP% (green) landscape distribution for a Eutherian (Felis catus; cat, a) and a Metatherian (Phascolarctos cinereus; koala, b). c 
A heatmap of the GC% landscape for all 12 Eutheria and 4 Metatherian in the following order: 1 Sus scrofa, 2 Equus asinus, 3 Orcinus orca, 4 Felis catus 
domestica, 5 Cricetulus griseus, 6 Rattus norvegicus, 7 Oryctolagus cuniculus, 8 Callithrix jacchus, 9 Trichechus manatus latirostris, 10 Loxodonta africana, 
11 Chrysochloris asiatica, 12 Orycteropus afer afer, 13 Vombatus ursinus, 14 Sarcophilus harrisii, 15 Phascolarctos cinereus, 16 Monodelphis domestica. In 
the gene ranking of both genomes a distinct Eutherian and Metatherian GC% landscape can be discerned
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Fig. 1  (See legend on previous page.)
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of the generated landscapes were clear and prominent. 
Indeed, within the Eutherian group only minimal dif-
ferences were observed between Laurasiatheria (line 
1–4), Euarchontoglires (line 5–8) and Afrotheria (line 
9–12), despite large morphological differences (life his-
tory traits) between individual species (e.g. rat (line 6) 
versus elephant (line 10)). Moreover, the four Metathe-
rian GC% landscapes were highly similar, irrespective 
of the chosen reference genome. In contrast, for each of 
the reference genomes, landscapes were clearly different 
between the Eutherian and Metatherian lineages (line 
1–12 vs. line 13–16). Most of the areas with peak GC% 
levels in one lineage only were located in subtelomeric 
regions when evaluated using the reference genome of 
the lineage. Examples of Eutherian-specific subtelomeres 
with high GC% in the human gene order are the sub-
telomeres of the p-arms in chromosomes 4, 16 and 19, 
and the subtelomeres of the q-arms of chromosomes 5, 
7, 8, 9, 14, 16, 17 and X. When orthologous genes were 
ordered based on position of another Eutherian reference 
genome (Sus scrofa), the highest GC% was also subtelom-
eric despite the different karyotype (Additional file 1: Fig. 
S1). However, when genes were ranked in the order of the 
Metatherian Monodelphis domestica genome (Fig.  1f ), 
most of the Eutherian peak levels of GC% were far from 
telomeres. Instead, Metatherian-specific peak values 
of GC% were observed at the subtelomere of the p-arm 
of chromosome 2 and the subtelomeres of the q-arm of 
chromosomes 1, 6 and X. Noteworthy is the common 
Eutherian/Metatherian GC% enrichment on   the  sub-
telomere of the p-arm of human chromosome 11. Next, 
we assessed whether subtelomeric GC-rich regions with 
an elevated contribution of GARP% to the amino acid 
composition of the encoded proteins could coincide with 
regions where proteins underwent accelerated evolution. 
In a first step, we calculated for all proteins and all species 
the pairwise protein divergence. Sixteen species make for 
120 pairwise comparisons: 1–66 intra-Eutherian, 67–114 
Eutherian-Metatherian, 115–120 intra-Metatherian. For 
each pairwise comparison, based on all orthologous pro-
tein divergences, the average protein divergence (PDav%) 
was calculated. We then compared the relationship 

between the time to the last common ancestor (t) ver-
sus PDav% (Fig. 2a). In a neutral model of evolution with 
a strict clock constant and without saturation, all data 
would fit to a line that originates in the X/Y intersection: 
PDav% = kav • t. We observe an almost perfect linear rela-
tionship with a good fit of the data to the regression line 
(R2 > 0.99), suggesting an average genome-wide molecu-
lar clock constant of 1.3% protein divergence per 10 mil-
lion years of evolution (Fig. 2a). Moreover, it was noticed 
that the Eutherian-Metatherian comparisons (t = 160 
million years) fit perfectly to this line. It is well known 
however, that these genome-wide averages are based on 
individual proteins with vastly different rates of evolu-
tion: between genes in one organism and between species 
for one orthologous gene. Indeed, this is also clear in our 
data set (Fig. 2b) where the distribution of divergence of 
individual proteins is shown in a box plot display. Major 
differences in the evolutionary rates of protein diver-
gence were also noted in a proof-of-concept phyloge-
netic analysis conducted on three sets of 16 genes with 
complete protein sequence information available for all 
16 studied species: set 1 (n = 16), Eutherian subtelomeric 
genes located in landscape windows with highest protein 
divergence rates in eutherian comparisons; set 2 (n = 16), 
Metatherian subtelomeric genes in windows with highest 
protein divergence rates for intra-Metatherian compari-
sons; set 3 (n = 16), genes that were not in subtelom-
eric regions of Eutherian and Metatherian genomes with 
low protein divergence rates for intra-Metatherian and 
intra-Eutherian comparisons. An example of phyloge-
netic data is shown for the NSMF gene (set 1—Fig. 2c): 
different branches of the inferred evolutionary tree have 
different rates of protein divergence, so that data fitted 
best to a relaxed clock model. Similar data were observed 
for most of the studied genes from the three sets. The 
estimated rates (expressed in a logarithmic scale on the 
Y-axis of Fig.  2d) disclose a heterogeneous picture in 
both clades with up to two orders of magnitude in the 
variation of protein divergence rates between individual 
genes. Genes with a higher evolutionary rate in Euthe-
ria are slightly more common in set 1, while genes with 
a higher evolutionary rate in Metatheria are enriched in 

Fig. 2  Evolutionary rates based on observed protein divergence (a, b) and phylogenetic analysis (c, d). a For each pairwise species comparison 
(total of 120 comparisons), divergence time (obtained from timetree.org) versus average protein divergence was plotted. Average protein 
divergence was the average divergence of all orthologous proteins. Data points are colored according to clade comparisons as indicated in the 
legend. The best regression line (dashed) was fitted to the data; b Boxplots of individual protein divergences; c Proof-of-concept phylogenetic 
analysis (detailed in the methods section) for the NSMF gene, with branches annotated with their inferred evolutionary rate (in substitutions per site 
per million years); d Mean evolutionary rates for Eutheria (black) and Metatheria (red) estimated through phylogenetic analysis, conducted on three 
sets of 16 genes with complete protein sequence information available for all species. Set 1: Eutherian subtelomeric genes located in landscape 
windows with highest protein divergence rates in eutherian comparisons; set 2: Metatherian subtelomeric genes in windows with highest protein 
divergence rates for intra-Metatherian comparisons; set 3: genes that were not in subtelomeric of Eutherian and Metatherian genomes with low 
protein divergence rates for intra-Metatherian and intra-Eutherian comparisons

(See figure on next page.)
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set 2. As expected from the landscapes, the average rate 
for genes from set 3 is one order of magnitude lower than 
groups 1 and 2 (Fig.  2d). Taken together, phylogenetic 
analysis confirms the idea that a genome-wide molecu-
lar clock constant is based on averaging genes with vastly 
different rates of evolution, often with significant varia-
tion between species. Such phylogenetic analyses come 
at a considerable computational cost however, owing to 
the complexity of performing model comparisons under 
these clock models and to analysing amino acid data sets 
using high-dimensional models.

We were interested in the possibility that the regional 
position of a gene could influence rates between indi-
vidual protein types and could contribute to differences 
between species for orthologous proteins. To assess this 
possibility, the protein divergence was normalized to 
observe deviations from the genome average:

It is clear that such normalization eliminates the influ-
ence of the phylogenetic distance on the measured 
result. We therefore aligned (both in the gene order of 
the human (Fig. 3a) and Monodelphis domestica (Fig. 3b) 
reference genomes) the nPD% landscapes calculated 
from 120 pairwise comparisons. A detailed list linking 
each number to a species pair is shown in Additional 
file 2: Table S1. Each of the heat maps in Fig. 3 is there-
fore based on about 1.8 million pairwise comparisons 
of orthologous proteins. Both heat maps clearly dis-
play Metatherian and Eutherian signatures of the chro-
mosomal regional position on the relative height of the 
molecular clock rate. The positions of the regions with 
the highest nPD% values were often found in subtelo-
meric regions: on the human reference genome for the 
intra-Eutherian comparisons (Fig. 3a, line 1–66) and on 
the Monodelphis domestica reference genome for the 
intra-Metatherian comparisons (Fig. 3b, line 115–120).

As nPD% is independent of phylogenetic distance, lin-
eage-specific positioning is a major factor for nPD%. We 
calculated for the 66 different eutherian-eutherian com-
parisons the mean nPD% for each predicted protein and 
then constructed a genome-wide landscape based on the 
sliding window analysis (red lines in Fig. 4a, human ref-
erence genome and Fig.  4b Monodelphis domestica ref-
erence genome). Likewise, we calculated per protein the 
mean nPD% for the 6 Metatherian-Metatherian compari-
sons (blue lines in Fig. 4a and b). These mean normalized 
values clearly show a landscape with regional accelera-
tions (of 30% or more) above the normalized genome-
wide means typical for the two mammalian lineages. In 
order to assess the statistical likelihood for such an out-
come and to quantify the number of sliding windows with 
divergence values above such a threshold, we distributed 

nPD% = PD%
/

PD
av
% = (k. t)

/(

k
av
· t
)

= k
/

k
av

the 15,727 genes in a random order over the packages 
that mimic the human or Monodelphis domestica chro-
mosomes. We created three random genome orders for 
the Eutherian and Metatherian analyses and observed 
a normal distribution of nPD% in both cases. The aver-
age of these randomized distributions for Eutheria and 
Metatheria is shown in Fig. 4c and 4d (grey color). This 
outcome was fundamentally different from the result of 
the biologically ordered set of genes in the human order 
(red distribution, Fig.  4c) or Monodelphis domestica 
order (blue distribution, Fig. 4d). We took a threshold for 
accelerated divergence using the mean value of the three 
random sets + 3 standard deviations (SD) (which results 
in approximately 30% more divergence than the genome-
wide mean). These thresholds are shown as dashed lines 
in Fig.  4c and d. If the genome was completely reshuf-
fled, only 0.3% (n = 47) of the data points were above 
this threshold. In the actual human order of the genes, 
however, 1,833 eutherian genes (12% of all studied genes) 
were observed in regions with divergence rates (of the 
sliding window) above this threshold, illustrating the 
strong effect of neighboring genes. The distribution of the 
sliding window protein divergence in the real gene order 
is far from a normal distribution and a subpopulation 
is skewed to high divergence values. The genome loca-
tion of these windows in a landscape setting can be seen 
above the red dashed line in Fig. 4a. The same phenome-
non was observed when analyzing Metatherian-Metathe-
rian pairwise divergence, studying the genes in a random 
order or the biological order of the Monodelphis domes-
tica reference genome. Again, the number of sliding win-
dows exceeding the 3SD above mean in the three random 
sets was much smaller (n = 28; 0.6% of all windows) than 
observed in the analysis of the Metatherian gene order 
(n = 1,504; location can be seen above the blue dashed 
line in Fig. 4b). Of interest is the Venn diagram in Fig. 4e 
which shows only a relatively small overlap between the 
set of proteins that exhibit both accelerated Eutherian-
Eutherian and Metatherian-Metatherian divergent evo-
lution (a list of the 1,833 Eutherian, 1,504 Metatherian 
and 345 common genes is provided in Additional file 3: 
Table  S2). The positions of the accelerated regions con-
firm what we already described (Fig. 2), where particular 
subtelomeres strongly have Eutherian-Eutherian but not 
Metatherian-Metatherian divergence (human reference 
gene order) and vice versa (Monodelphis domestica gene 
order).

Defining the first 50 and last 50 genes (windows) of 
the 23 human chromosomes as subtelomeric, the actual 
composition of subtelomeric windows in the Euthe-
rian-Eutherian comparisons with divergence exceed-
ing mean + 3SD (908/1,833 = 50%) is greater than 
randomly expected (2,300/15,757 = 15%). This result is 
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counterintuitive, considering the many chromosome 
rearrangements such as fusions, fissions and translo-
cations among mammalian species [8]. But it could be 
explained if subtelomeric regions would stay in a subtelo-
meric region, even while changing position in genome 

space during rearrangements. On the contrary, a well-
conserved Metatherian karyotype (2n = 14) with a low 
amount of large chromosomes [9], has enabled a differ-
ent course with variant choices for subtelomeric accelera-
tions when compared to the eutherian line. We illustrate 
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Fig. 3  Regional changes in the molecular clock rates of orthologous proteins in Eutherian and Metatherian genomes. The heatmaps with a human 
(a) or Monodelphis domestica (b) ranking order each integrate approximately 1.8 million pairwise comparisons of orthologous proteins departing 
from the core set of 15,727 mammalian proteins and 120 pairwise comparisons between 16 species. For each comparison, the %protein divergence 
(PD% = 100—%identical amino acids) was divided by the average protein divergence between the same two species. The resulting normalized 
%protein divergence (nPD%) represents k/kav, which is the molecular clock rate of the particular protein divided by the genome-wide average of 
the molecular clock constant. Sliding window analysis integrates the k/kav of the centered gene and its 100 neighbors (50 on each side). Details of 
the 120 comparisons (1–66 intra-Eutherian, 67–114 Eutherian-Metatherian, 115–120 intra-Metatherian). can be found in Additional File 2: Table S1. 
Most clear-cut landscapes with Eutherian and Metatherian signatures are seen with the intra-Eutherian and intra-Metatherian comparison
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Fig. 4  Strong conservation of regional effects in the molecular clock rate in Eutherian and Metatherian landscape signatures. The data set of 
Fig. 2 was further integrated by calculating the mean sliding window values of 66 intra-Eutherian (red) and nPD% is shown while in blue the 
average of the 6 intra-Metatherian (blue) comparisons, using the human (a) or Monodelphis domestica (b) genome order. Clear-cut subtelomeric 
increments above the genome-wide averages (dashed lines) can be observed with discriminative intra-Eutherian and intra-Metatherian maximal 
values (e.g., the right telomere of human chromosome 14 or Monodelphis domestica chromosome 8). Distribution of the window-averaged nPD% 
is fundamentally different when genes were in random order (grey) as compared to the order of the human genome (red, c) or Monodelphis 
domestica genome (blue, d). When using a threshold based on mean + 3SD of the random distribution we found 1,833 eutherian windows and 
1504 Metatherian windows with window-averaged nPD% exceeding these thresholds. e These two gene sets show minimal overlap, providing 
further evidence for a Eutherian and Metatherian signature of regional effects in the molecular clock rate. That subtelomeric regions with high 
window-averaged nPD% remain subtelomeric despite changes in karyotypes is suggested by a Circos plot (f) that connect in two Eutherian species 
(pig and human) concordant subtelomeric regions with high window-averaged nPD% (green lines) as opposed to few discordant subtelomeric 
regions with high window-averaged nPD% in one species only (black lines). In contrast human subtelomeric regions with high window-averaged 
nPD% are predominantly non-subtelomeric in the Monodelphis domestica genome (black lines g). Similarly, Monodelphis domestica subtelomeric 
regions with high window-averaged nPD% are predominantly non-subtelomeric in the human genome (black lines h)
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this with Circos plots connecting the protein-encoding 
genes between the genomes of Homo sapiens and Sus 
scrofa (pig) with accelerations in the Eutherian-Euthe-
rian comparisons (Fig.  4f ). In this plot, regions that are 
subtelomeric in both genomes are colored green show-
ing that these genes remained predominantly subtelom-
eric in both genomes. The same gene set connecting the 
genomes of Homo sapiens and Monodelphis domestica 
shows predominantly black lines as the loci in the Mono-
delphis domestica genome are not subtelomeric (Fig. 4g). 
The same was observed for the fast-evolving metatherian 
genes from the Monodelphis domestica genome when 
these were mapped on the human genome (Fig.  4h). 
Taken together, Eutherian and Metatherian landscapes—
both at the level of GC%, GARP% and protein diver-
gence—are well conserved within each lineage but also 
contain important differences between lineages, most 
notably in subtelomeres. Heterogeneity is considerable, 
so that fluctuation (especially the acceleration of pairwise 
protein divergence) above the genome-wide average can 
amount to 30% or more.

Discussion
We previously described a method to assess large-scale 
macro-evolutionary events in vertebrate genome-wide 
landscapes [1]. The current study was focused on the 
assessment of lineage-specific regional effects of chro-
mosome position on the molecular clock rates of diver-
gent evolution of orthologous proteins. Our analysis 
has found evidence for these regional effects underlying 
hallmarks of a Eutherian and a Metatherian direction 
of genome evolution. The remarkable conservation of 
exome landscapes among Eutheria and among Metathe-
ria, but clearly differing between those groups, seems 
to indicate that one key event, 160 million years ago, 
steered the Metatherian and Eutherian lineages into fun-
damentally different directions. This key event may be 
the lineage-specific position of a set of genes that was 
"externalized" into subtelomeric gene-dense regions. Sto-
chastic redistribution of genes over distinct karyotypes at 
the time of this split may have defined these two diverg-
ing directions. The Circos plot analysis of human and 
porcine subtelomeres supports the hypothesis that after 
the split from a common ancestor, a large proportion of 
the genes that were originally "externalized" remained 
"externalized" until the present. The implication is that 
over deep evolutionary time a vast opportunity was cre-
ated for myriad changes in the amino acid sequence of 
the encoded proteins. The more rapidly evolving regions 
are rich in G and C bases and gene-dense. The underly-
ing mechanism behind the GC enrichment is GC-biased 
gene conversion, which occurs during meiotic recom-
bination [10]. If a mismatch in heteroduplex DNA is 

present during the recombination event, there is a higher 
probability of repair towards the G or C allele, which 
could lead to fixation of the G or C allele in the popu-
lation. The recombination process has the evolutionary 
advantage of selection of haplotypes in which epistatic 
interactions between different alleles of neighboring 
genes creates novel phenotypes. In this light, the mixture 
of genes with different functions in one genome locus 
creates an enormous potential for novel haplotypes that 
could accelerate the evolution of integrated physiology. 
Many detailed follow-up studies will be needed to better 
define the exact impact of gene mutations that contrib-
uted to the two diverging evolutionary paths. We real-
ize that this analysis is far from complete. A limitation of 
our work is the fact that some large gene families were 
excluded from the study as orthology is elusive because 
of multiple events of gene gain and loss in different spe-
cies (e.g., olfactory receptor gene, zinc finger gene clus-
ters, immunoglobulin and T-cell receptor gene clusters). 
A second point of consideration is that we restricted 
our analysis to the coding part (exome) of mammalian 
genomes, while accelerated mutation rates of regulatory, 
non-coding information could also drive divergent evo-
lution of different lineages. For example in three genes 
(DIO3, HOXA13, and IGF2), which we will further dis-
cuss below because of their remarkable position in the 
genome landscapes (Additional file  4: Fig. S2a), large 
CpG islands are not only part of the coding sequence, but 
also part of a bidirectional promoter region that regu-
lates an opposite strand non-coding RNA (DIO3-AS 
HOXA13-AS and IGF2-AS—Additional file 4: Fig. S2b). 
In this context it is remarkable that the 330-nucleotide 
CpG island on the IGF2 promoter is one of the largest 
of more than 200 islands in the gene-dense chr11p15.5 
subtelomeric region (red circle in Additional file  5: Fig. 
S3). Genomic imprinting was observed in approximately 
1% of the ± 17,000 protein-encoding mammalian genes 
[11]. Interestingly, this small number of genes is further 
characterized by an anatomic clustering in a handful 
of genomic loci that are considered crucial for prenatal 
growth regulation, development of brain function and 
postnatal energy homeostasis [11]. It is no coincidence 
that our approach of mammalian genome landscapes, 
with massive GC accumulation on a megabase scale, led 
us to two of these imprinted regions, DIO3 and IGF2, 
that harbor master genes for the divergent prenatal 
growth regulation in Metatheria and Eutheria.

Through a systematic study of 15,727 common genes 
in 16 mammals, we obtained conserved regions of 
strongly enriched GC% and GARP% in Eutherian and 
Metatherian landscapes that signify a common mam-
malian descent. One of the most prominent examples 
of such a common feature in the two mammalian taxa 
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is the subtelomere of chromosome 11 (chr11p15.5), a 
2.5  MB region which is not only very gene dense, har-
boring ± 200 CpG islands (Additional file 5: Fig. S3) but 
which also has a much lower GC% in the landscapes of 
reptilian, amphibian and fish taxa [1]. This common 
mammalian region with high GC% contains the CDHR5 
and ODF3 genes, which were present in set 1 of the phy-
logenetic analysis, explaining high rates of protein diver-
gence both in Eutheria and Metatheria. Interestingly, the 
same region contains the IGF2-insulin-tyrosine hydroxy-
lase locus, which encodes key genes for a neuroendocrine 
network that controls metabolism, nutrition and growth. 
Indeed, there is widespread consensus about the idea that 
the mammalian IGF2 locus and the mammalian insu-
lin gene are both crucial for fetal nutrition and growth, 
balancing the nutritional capacity of the mother to the 
needs of the developing fetus(es) [12]. Both the mater-
nal adaptation of pancreatic beta cells during pregnancy 
[13] and the important role of the imprinted IGF2 locus 
for fetal growth [14] have been studied in detail during 
the past decades. Human errors in the epigenetic con-
trol of this region result in fetal growth disorders such 
as the Silver-Russell (small fetal size) and Beckwith-
Wiedemann (macrosomia) syndromes [12]. Further-
more, abnormal processing of IGF2 was suggested as a 
mechanism involved in fetoplacental growth restriction 
[15, 16]. Although the imprinted IFG2 locus and the 
metabolic importance of insulin is common to Euthe-
ria and Metatheria, we were surprised to note that the 
IGF2, insulin, tyrosine hydroxylase gene cluster is poorly 
mapped in some of the marsupial genomes. In fact, for 
all of these three genes no refseq sequence can be found 
in the well-studied Monodelphis domestica genome 
according to the public databases (NCBI and Ensembl), 
something that needs further attention. However, using 
fluorescent in  situ hybridization (FISH), the M. domes-
tica IGF2 gene was mapped to the subtelomeric q-arm of 
chromosome 5 [17], which has a high GC% (Fig. 1e and 
1f ). A widespread phenomenon on GC% accumulation 
near the subtelomeres of eukaryotic chromosomes has 
been explained by the GC-biased gene conversion, which 
occurs during DNA repair after meiotic crossing over 
and which favors ambiguities with G or C nucleotides 
over A and T [10, 18]. In addition, the same subtelom-
eric region contains in the eutherian genomes the beta-
globin gene cluster, which has contributed to innovations 
in mammalian oxygen flow during pregnancy [19]. We 
subsequently looked for landscape synapomorphies in 
which the eutherian and metatherian lineages maximally 
diverged at the level of GC%. One of the most outspoken 
examples of an Eutherian (but not Metatherian) accu-
mulation of GC% is found in the subtelomeric q-arm of 
human chromosome 14. Indeed, this feature is found in 

all analyzed Eutherian species (Fig. 1c), but is completely 
absent in the 4 studied Metatherians Fig. 1c), as well as 
in other vertebrates [1]. This region contains a gene com-
plex that plays a fundamental role in some of the differ-
ences between Eutherian and Metatherian reproductive 
physiology and adaptive immunity. First, this subtelo-
meric region contains the DLK1-DIO3 region, which 
also contains a large cluster of Eutherian miRNA and 
snoRNA genes [20] that are relevant for placental growth 
and placental function [21, 22]. Importantly, the locus 
is imprinted in Eutheria but not in Metatheria [20]. The 
imprinted DIO3 gene is a key enzyme that regulates the 
activity of thyroid hormone in target cells, in particular 
placenta and brain [23]. Placental expression of DIO3 was 
mentioned as being crucial for protecting the developing 
fetal brain against maternal thyroid hormone [24]. Inter-
estingly, the DLK1-DIO3 locus has also been implicated 
in the Eutherian adaptation of newborn pups to extrau-
terine environment by stimulating the maturation and 
activity of brown fat cells that generate heat [25]. In this 
respect, it may be relevant that after birth the Metathe-
rian pups are protected against heat loss by the maternal 
pouch, whereas the Eutherian young are more exposed to 
environmental temperature drops.

The subtelomeric q-arm of chromosome 14 not only 
contains key genes for placental function but it also con-
tains the immunoglobulin heavy chain cluster (IGH), 
which is one of the pillars of the adaptive immune sys-
tem in vertebrates [26]. Interestingly, the complexity of 
the immunoglobulin heavy chain cluster in the euthe-
rian line of mammals is much greater than in Metathe-
ria [27–29]. Some Eutherian lines have evolved specific 
innovations such as the single chain immunoglobulins 
in camelids [30]. On the contrary the Metatherian diver-
sity of immunoglobulins is much more dependent on the 
complexity of the lambda light chain locus (IGLλ) [27, 
28] and it is of interest to note that this locus is present 
in a subtelomeric region with increased GC% in the mar-
supial genomes (Additional File 4: Fig. S2a). Indeed, stud-
ies using FISH probes in Monodelphis domestica [31] and 
in wallaby [32] have localized the IGLλ at a subtelomeric 
region, which is associated with accelerated evolution in 
genome landscapes based on the Monodelphis domestica 
gene order, while IGH is situated at an interstitial region 
of chromosome 1 (Fig.  4a). Conversely, Eutherians such 
as primates, mouse [33] and dogs have a conserved sub-
telomeric location of heavy chain locus while the IGLλ 
is interstitial (Additional File 4: Fig. S2a). This conserva-
tion can be extended to other lineages of placental mam-
mals such as alpaca [34], giant panda [35], rabbit [36] 
and cow [37]. This example from the adaptive immune 
system illustrates that lineage-specific landscape traits 
can be correlated to important aspects of physiology 
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other than reproductive biology. The DLK1-DIO3 locus 
represents an example of an Eutherian genome region 
with lineage-specific accumulation of GC% and acceler-
ated protein evolution. On the other hand, the subtelom-
eric q-arm of chromosome 6 in Monodelphis domestica 
(Fig. 1f ) contains the HOXA gene cluster, which plays a 
crucial role in Eutherian uterine development, a process 
in which the two Müllerian ducts fuse during the female 
reproductive organogenesis [38]. The seminal role of 
HOXA13 in this process has been demonstrated both in 
knockout mouse models [39] and in patients with hand-
foot-genital syndrome (OMIM 14,000) [39, 40]. In some 
families with hand-foot-genital syndrome there is a stable 
expansion of poly-alanine tracts in the GC-rich first exon 
of the HOXA13 protein [41–46]. Among the develop-
mental abnormalities that have been reported are didel-
phic uteri, caused by incomplete fusion of the Müllerian 
tubes [41]. The lineage-specific differences in the Euthe-
rian/Metatherian HOXA13 sequence, which point in 
the direction of a unique extra poly-alanine region in the 
four studied Metatherians (Additional file 4: Fig. S2c) are 
therefore noteworthy. We believe that further detailed 
analysis of HOXA13 orthologues and site-directed exper-
imental mutagenesis will be required to better under-
stand the relationship between HOXA13 differences 
between Eutherians and Metatherians and their effects 
on uterine anatomy and function.

Finally, our proof-of-concept phylogenetic analysis 
paves the way for further research into Bayesian model 
selection and posterior inference under molecular clock 
models to determine genome-wide landscapes of pro-
tein evolution. Such procedures are complex, time-con-
suming and may ultimately benefit from a more clever 
modeling exercise where a limited number of analyses 
attempt to describe larger genomic regions than just 
a single gene using hierarchical phylogenetic models 
for example. Therefore, the currently proposed sliding 
window approach serves as an efficient method to con-
struct genome-wide landscapes to study lineage-spe-
cific regional effects on the evolutionary rate of protein 
divergence.

Conclusion
A systematic study of divergence of orthologous pro-
teins in mammalian genomes has resulted in landscapes 
in which lineage-specific regional effects on the molecu-
lar clock rates can be visualized. We hypothesize that 
loci that contain the most pronounced subtelomeric 
incremental effects on these molecular clock rates are 
privileged sites for master genes that control important 
functions such as intra-uterine life and the generation of 
immunoglobulin diversity.

Methods
Retrieving of genome data for a typical vertebrate gene set
Data for GC content (GC%), amino acid usage (amount 
of glycine, alanine, arginine and proline; GARP%) and 
protein divergence were downloaded for 4 Metatheria 
and 12 Eutheria using scripts as previously described [1]. 
For the Metatheria, we used all four species for which we 
could retrieve genetic information from NCBI: Monodel-
phis domestica, Phascolarctos cinereus, Sarcophilus har-
risii and Vombatus ursinus. For the Eutheria, we selected 
species covering different niches and spanning the three 
largest clades (4 species per clades): Afrotheria (Chrys-
ochloris asiatica, Loxodonta africana, Orycteropus afer 
afer and Trichechus manatus latirostris), Euarchontog-
lires (Callithrix jacchus, Cricetulus griseus, Oryctolagus 
cuniculus, and Rattus norvegicus) and Laurasiatheria 
(Equus asinus, Felis catus domestica, Orcinus orca and 
Sus scrofa). The human genome only served as a reference 
genome to construct our data matrix, but data of human 
GC%, GARP% and protein divergence were not used in 
our analysis. Protein-encoding genes were included in 
our analysis if the gene was present in both Metatheria 
and Eutheria to exclude lineage-specific genes, yielding a 
total set of 15,727 genes. For the genome of the Mono-
delphis domestica (Metatheria), we downloaded the 
location of the genes to get more information about the 
characteristics and their physical location. Additionally, 
for the genome of the pig, Sus scrofa, the position of the 
genes was downloaded to serve a second template for the 
Eutheria. A list of transcript IDs is provided in Additional 
file 6: Table S3.

Sliding window approach, protein divergence 
and heatmaps
We used the same sliding window as previously described 
[1]. In short, key metrics (GC%, GARP%, protein diver-
gence) were graphically represented on the genome as a 
regional average. For every gene on location Lk, a sliding 
window metric was defined averaging the metric’s value 
over 100 neighboring genes at positions Lk−50 to Lk+50. 
All metrics in the figures are displayed using the sliding 
window approach.

Protein identity between pairs of orthologous proteins 
was calculated using EMBOSS Stretcher (BLOSUM62 
substitution matrix). The protein identity score was cal-
culated as the number of matching residues divided by 
the length minus the number of gaps to exclude low pro-
tein identities as a consequence of incomplete sequence 
information. Protein identities below 30% were dis-
carded. Protein divergence was calculated as 1 − protein 
identity. Divergence times between species were obtained 
from timetree.org [7].
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According to the molecular clock hypothesis, the per-
centage of changed amino acid residues in an ortholo-
gous protein sequence (%protein divergence, abbreviated 
as PD%) is proportional to the time (t) between the 
compared species and their split from the last common 
ancestor [3]. This linear relationship can be written as 
follows:

The constant k in the equations is known as the evolu-
tionary rate or molecular clock constant [3]. Interestingly, 
the exact size of k greatly depends on the type of protein 
that is studied and the mechanism behind this difference 
is not fully understood. Moreover, for the same type of 
protein, different values of k were found within different 
phylogenetic lineages [47]. To study this problem, we first 
determined the average of all molecular clock constants 
when comparing the genome-wide set of orthologous 
proteins of a particular pair of species: PDav% = kav. t

We were interested in the possibility that the regional 
position of a gene in a genome landscape could influence 
k. To assess this possibility, we normalized the protein 
divergence of all orthologous proteins in a pair of species 
by dividing PD% by PDav.:

Such normalization eliminates the influence of time to 
the common ancestor on the measured result. To inves-
tigate a regional contribution of k in genome-wide land-
scapes we calculated nPD% with sliding window with a 
centered gene and its 100 neighbors (50 on each side). 
This calculation was repeated for the 120 possible pair-
wise comparisons between any two classes of the study. 
Heatmaps were made in Microsoft Excel with conditional 
formatting by plotting a table of the sliding window val-
ues (for GC or nPD%).

Circos plots
Circos plots (Homo sapiens vs Sus scrofa and Homo sapi-
ens vs Monodelphis domestica) were generated using 
the synteny portal Syncircos (http://​bioin​fo.​konkuk.​ac.​
kr/​synte​ny_​portal/​htdocs/​synte​ny_​circos.​php; settings 
resolution 150,000 bp). These Circos plots show relation-
ships for all genetic material. We only displayed the lines 
exceeding the threshold (for human Fig. 3a and for Mono-
delphis domestica Fig.  3b) simplifying the Circos plots. 
Lines were colored green when the genes were located at 
the end of the chromosomes in both species. Black lines 
show that the genes are not located at the ends of the 
chromosome in both species (if the genes are located at 

PD% = k. t.

nPD% = PD% /PDav
% = (k . t)
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k
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. t
)

= k
/

k
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.

the end of the chromosome in only one species, the line 
will have a black color).

Phylogenetic analysis
To investigate the differences in evolutionary rates 
between Metatherians and Eutherians in the context of 
their evolutionary history, we performed phylogenetic 
reconstruction of the sixteen species of interest under 
four different clock models: a strict clock, a fixed local 
clock (with one local clock on the Metatherian lineage 
and another on the Eutherian lineage; [48]), an uncorre-
lated relaxed clock with an underlying exponential dis-
tribution [49], and an uncorrelated relaxed clock with an 
underlying lognormal distribution. Relaxed clock models 
are among the most popular models used in phylogenetic 
inference, owing to their flexibility while not requiring 
many parameters to be estimated. These models assume 
that each branch in a phylogenetic tree evolves accord-
ing to a unique evolutionary rate, drawn from an under-
lying distribution. We applied a Bayesian model selection 
approach to determine which clock model best describes 
each amino acid data set. We considered a subset of genes 
from each of three chromosomal positions for Bayesian 
phylogenetic inference and model selection. After filter-
ing out genes for which there were missing data for one 
or more taxa, we constructed multiple sequence align-
ments using MUSCLE [50]. This yielded 16 alignments 
for gene list 1, 63 for gene list 2, and 70 for gene list. For 
gene lists 2 and 3 we truncate the lists to the 16 top genes 
for ensuing phylogenetic analysis.

We performed Bayesian phylogenetic reconstruc-
tion using BEAST 1.10.5 [51]. For each gene, we under-
took phylogenetic reconstruction under the four 
aforementioned clock models. In addition to enforc-
ing that the Metatherian species form a monophyletic 
clade we enforced monophyly for Afrotheria, Euarchon-
toglires, and Laurasiatheria so that a calibration prior 
could be assigned the most recent common ancestor of 
each of these clades, in order to obtain a time-calibrated 
phylogeny. We jointly estimated all parameters of inter-
est, including the topology and branch lengths, using 
the Markov chain Monte Carlo (MCMC) algorithm as 
implemented in BEAST. We assumed the default priors 
as suggested in BEAUti [51] but add calibration priors to 
a number of internal nodes of the phylogeny. To inform 
the molecular clock models and be able to estimate diver-
gence times, we included three normally distributed 
node calibration priors determined by meta-analyses of 
between-clade divergence times (timetree.org). These 
calibration priors relate to the Metatheria-Eutheria 
divergence (μ = 158.5MYA, σ2 = 3.85), the divergence 

http://bioinfo.konkuk.ac.kr/synteny_portal/htdocs/synteny_circos.php
http://bioinfo.konkuk.ac.kr/synteny_portal/htdocs/synteny_circos.php
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of Afrotheria from other eutherians (μ = 104, σ2 = 2.55), 
and the divergence of Euarchontoglires from Laura-
siatheria (μ = 96, σ2 = 2.55). We performed initial Bayes-
ian model testing using various amino acid substitution 
models, which revealed that the JTT amino acid model 
[52] yielded the best relative fit to the data, along with 
modeling site heterogeneity through a discretized gamma 
distribution [53]. For each reconstruction, we performed 
a BEAST analysis for 2,000,000 iterations, which was 
sufficient for all analyses to converge and to accumulate 
over 200 effective samples for all inferred parameters, 
as assessed using Tracer [54]. Parameters were sampled 
every 2000 iterations after discarding 10% of states as 
burn-in. For each posterior tree distribution, we con-
structed a maximum clade credibility tree to summarize 
phylogenetic results. We performed (log) marginal like-
lihood estimation using a generalized stepping-stone 
(GSS; [55]) algorithm to determine which clock model 
yields the best fit for each amino acid data set. Each 
power posterior within the GSS approach ran for 100,000 
(plus 10% burn-in) iterations for 50 path steps. Param-
eters were sampled every 500th iteration and (log) mar-
ginal likelihoods were calculated for each clock model 
for each gene. This resulted in a total of 192 analyses to 
be run as part of the Bayesian model selection exercise 
to determine the optimal molecular clock model for each 
amino acid data set and to obtain accurate estimates of 
all analysis parameters including the tree topology and 
branch lengths.

Abbreviations
GC%: GC content; GARP%: % Amino acids glycine (G), alanine (A), arginine (R) 
and proline (P) in the protein.; nPD%: Normalized protein divergence %; FISH: 
Fluorescence in situ hybridization; IGH: Immunoglobulin heavy chain; IGLλ: 
Immunoglobulin light chain.
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Additional file 1: Figure S1. Heatmap of GC% in the order of the pig 
genome. Similar to the heatmap in Fig. 1c, the highest GC% for the Euthe-
ria is often located at the end of the chromosomes, while high GC% for 
Metatheria is often towards the middle of the chromosomes.

Additional file 2: Table S1. Species pairs for heatmaps in Fig. 3. 120 pairs 
of species can be formed from the 12 Eutheria and 4 Metatheria in our 
study. Here is a list coupling the number to pair of species.

Additional file 3: Table S2. List of genes exceeding the threshold of a fast 
evolving set in Eutheria and Metatheria. There are 1,833 Eutherian genes 
above the threshold and 1,504 metatherian genes above the threshold. 
There are 345 common genes in the two gene sets.

Additional file 4: Figure S2. Examples of master gene complexes in 
subtelomeric regions of the human and Monodelphis domestica genome. 
a) chromosome mapping of IGF2, which is in a subtelomeric GC rich 
region both in the human and Monodelphis domestica genomes. On 

the contrary, discordance is seen for the HOXA-gene cluster, which is 
subtelomeric in Monodelphis domestica but not in the human genome. 
Discordance is also seen for the immunoglobulin light chain lambda locus 
(IGLλ—only subtelomeric in Monodelphis domestica) and the heavy chain 
locus (IGH—subtelomeric in the human genome). In Eutherian genomes 
IGH is in proximity to DIO3 and a large microRNA gene cluster that 
regulates placental/fetal interactions. b) GC accumulation may also affect 
regulatory sequence such as large CpG islands that non only overlap with 
coding information but that also regulate expression of non-coding RNA. 
c Schematic representation of HOXA13 in Eutheria and Metatheria. Some 
patients with hand-foot-genital syndrome have mutations in the HOXA13 
gene that are extensions of the poly-alanine (polyA) tracts. Metatheria 
have a conserved extra polyA tract (yellow).

Additional file 5:  Figure S3.Figure S3: Gene density and CpG islands 
at human chr11p15. The subtelomere of the p-arm of human chromo-
some 11 contains approximately 200 CpG islands in a gene dense area. 
The second largest CpG island containing 330 base pairs is located in a 
bidirectional promotor (Fig. S2b) and covers the first exon of the IGF2 
gene (red circle).

Additional file 6: Table S3. Transcript ID’s of all 16 used species. This file 
contains the list of the 15,727 used genes with NM/XM-numbers for all 
species used in our analysis.
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